Определение 1. Элементарными преобразованиями системы называются:
1) умножение уравнения на число, отличное от нуля;
2) прибавление к одному уравнению другого уравнения, умноженного на некоторое число, отличное от нуля.
3) перестановка двух уравнений;
4) отбрасывание уравнения 0=0.
Если получено уравнение 0=k, то система несовместна.
Метод Гаусса состоит в приведении системы к диагональному виду путем последовательного исключения неизвестных. Количество исключенных неизвестных равно числу линейно независимых уравнений. Переменная считается исключенной, если она содержится только в одном уравнении с коэффициентом 1.
Пример.
Получено решение системы
.
Метод Гаусса удобно применять к расширенной матрице системы, левую часть которой с помощью элементарных преобразований матрицы нужно привести к единичной матрице.
Пример. Рассмотрим систему из предыдущего примера. Составим расширенную матрицу:
Получено решение системы .