Условие совместности

 

Рассмотрим неоднородную систему:

Рассмотрим матрицы:

 и .

Матрица  называется расширенной матрицей системы.

Теорема (теорема Кронекера - Капелли). Неоднородная система линейных уравнений совместна тогда и только тогда, когда ранг матрицы, составленной из коэффициентов при неизвестных, равен рангу расширенной матрицы.

Доказательство. Необходимость. Пусть система совместна, тогда найдутся числа с1, с2, …, сn, при подстановке которых в систему мы получим m тождеств, которые можно записать в виде одного векторного тождества:

.

Следовательно, вектор-столбец свободных членов является линейной комбинацией векторов-столбцов матрицы А, тогда добавление его к системе векторов-столбцов матрицы А не меняет ранга системы. Отсюда r(A)=.

Достаточность. Пусть r(A)==r. Следовательно, существует линейно независимая подсистема из r векторов-столбцов матрицы A. Она же будет содержатся и в матрице . Так как эта система максимальна, то вектор-столбец свободных членов будет выражаться через эти r векторов-столбцов. Следовательно, вектор-столбец свободных членов можно представить в виде линейной комбинации всех векторов-столбцов матрицы А, т.е. найдутся числа с1, с2, …, сn такие, что вектор-столбец будет представлен в виде

.

Следовательно, числа с1, с2, …, сn являются решением системы, т.е. она совместна.