Определение. Предел отношения приращения функции в данном направлении к приращению направления, когда приращение направления стремится к нулю, называется производной функции в данном направлении (если этот предел существует и конечен);

.

Если направление  совпадает с направлением оси ОХ, то производная по направлению совпадает с частной производной по переменной х. Аналогично производная по направлению оси ОУ совпадает с частной производной по переменной у.

Теорема. Производная по направлению равна сумме попарных произведений частных производных в данной точке на направляющие косинусы данного направления.

.